1,542 research outputs found

    Characteristics of Low-Latitude Coronal Holes near the Maximum of Solar cycle 24

    Get PDF
    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO/AIA-193 filtergrams over the time range 2011/01/01 to 2013/12/31. We analyse the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic field densities, the local distribution of the SDO/AIA-193 intensity and the magnetic field within the coronal holes, and the distribution of magnetic flux tubes in coronal holes. We find that the mean magnetic field density of all coronal holes under study is 3.0 +- 1.6 G, and the percentage of unbalanced magnetic flux is 49 +- 16 %. The mean magnetic field density, the mean unsigned magnetic field density, and the percentage of unbalanced magnetic flux of coronal holes depend strongly pairwise on each other, with correlation coefficients cc > 0.92. Furthermore, we find that the unbalanced magnetic flux of the coronal holes is predominantly concentrated in magnetic flux tubes: 38 % (81 %) of the unbalanced magnetic flux of coronal holes arises from only 1 % (10 %) of the coronal hole area, clustered in magnetic flux tubes with field strengths > 50 G (10 G). The average magnetic field density and the unbalanced magnetic flux derived from the magnetic flux tubes correlate with the mean magnetic field density and the unbalanced magnetic flux of the overall coronal hole (cc > 0.93). These findings give evidence that the overall magnetic characteristics of coronal holes are governed by the characteristics of the magnetic flux tubes.Comment: 15 figure

    Candidate hypervelocity stars of spectral type G and K revisited

    Full text link
    Hypervelocity stars (HVS) move so fast that they are unbound to the Galaxy. When they were first discovered in 2005, dynamical ejection from the supermassive black hole (SMBH) in the Galactic Centre (GC) was suggested as their origin. The two dozen HVSs known today are young massive B stars, mostly of 3-4 solar masses. Recently, 20 HVS candidates of low mass were discovered in the Segue G and K dwarf sample, but none of them originates from the GC. We embarked on a kinematic analysis of the Segue HVS candidate sample using the full 6D phase space information based on new proper motion measurements. Their orbital properties can then be derived by tracing back their trajectories in different mass models of our Galaxy. We present the results for 14 candidate HVSs, for which proper motion measurements were possible. Significantly lower proper motions than found in the previous study were derived. Considering three different Galactic mass models we find that all stars are bound to the Galaxy. We confirm that the stars do not originate from the GC. The distribution of their proper motions and radial velocities is consistent with predictions for runaway stars ejected from the Galactic disk by the binary supernova mechanism. However, their kinematics are also consistent with old disk membership. Moreover, most stars have rather low metallicities and strong α\alpha-element enrichment as typical for thick disk and halo stars, whereas the metallicity of the three most metal-rich stars could possibly indicate that they are runaway stars from the thin disk. One star shows halo kinematics.Comment: A&A letter accepte

    Iron in Hot DA White Dwarfs

    Get PDF
    We present a study of the iron abundance pattern in hot hydrogen-rich (DA) white dwarfs. The study is based on new and archival far ultraviolet spectroscopy of a sample of white dwarfs in the temperature range 30,000 K < T_eff < 64,000 K. The spectra obtained with the Far Ultraviolet Spectroscopic Explorer along with spectra obtained with the Hubble Space Telescope Imaging Spectrograph and the International Ultraviolet Explorer sample FeIII to FeVI absorption lines enabling a detailed iron abundance analysis over a wider range of effective temperatures than previously afforded. The measurements reveal abundance variations in excess of two orders of magnitude between the highest and the lowest temperatures probed, but also show considerable variations (over one order of magnitude) between objects with similar temperatures and surface gravities. Such variations in cooler objects may be imputed to accretion from unseen companions or so-called circumstellar debris although the effect of residual mass-loss and selective radiation pressure in the hottest objects in the sample remain dominant.Comment: Accepted for publication in Ap

    Striking Photospheric Abundance Anomalies in Blue Horizontal-Branch Stars in Globular Cluster M13

    Get PDF
    High-resolution optical spectra of thirteen blue horizontal-branch (BHB) stars in the globular cluster M13 show enormous deviations in element abundances from the expected cluster metallicity. In the hotter stars (T_eff > 12000 K), helium is depleted by factors of 10 to 100 below solar, while iron is enhanced to three times the solar abundance, two orders of magnitude above the canonical metallicity [Fe/H] ~= -1.5 dex for this globular cluster. Nitrogen, phosphorus, and chromium exhibit even more pronounced enhancements, and other metals are also mildly overabundant, with the exception of magnesium, which stays very near the expected cluster metallicity. These photospheric anomalies are most likely due to diffusion --- gravitational settling of helium, and radiative levitation of the other elements --- in the stable radiative atmospheres of these hot stars. The effects of these mechanisms may have some impact on the photometric morphology of the cluster's horizontal branch and on estimates of its age and distance.Comment: 11 pages, 1 Postscript figure, uses aaspp4.sty, accepted for publication in ApJ Letter

    The Science with the Interstellar Heliopause Probe

    No full text
    International audienceAfter the exciting in-situ observations of the termination shock and the entry of the Voyager 1 spacecraft in the heliosheath, there is a growing awareness of the significance of the physics of the outer heliosphere. Its understanding helps to clarify the structure of our immediate interstellar neighbourhood, contributes to the clarification of fundamental astrophysical processes like the acceleration of charged particles at a steller wind termination shock, and also sheds light on the question to what extent interstellar-terrestrial relations are important for the environment of and on the Earth. Consequently, there are new seriously discussed suggestions for sending a modern spacecraft into the heliosheath and beyond. One of those candidates is the Interstellar Heliopause Probe (IHP) that has been studied in a Technology Reference Study by ESA/ESTEC. Here, we discuss the science objectives and expected scientific performance of this mission

    A criterion to discriminate between solar and cosmic ray forcing of the terrestrial climate

    No full text
    International audienceThere is increasing evidence that there exist interstellar-terrestrial relations and that the heliosphere's effectivity to serve as a protecting shield for the Earth, specifically against cosmic rays, is varying in time. Nonetheless, a debate is going on whether, amongst other drivers, the Sun or the cosmic rays are influencing the terrestrial climate, particularly on periods of hundred years and shorter. As the modelling of the transport of cosmic rays in the heliosphere has evolved from pure test particle simulations to far more consistent treatments, one can explain various correlations within the framework of physical models and one can make quantitative predictions regarding terrestrial indicators of interstellar-terrestrial relations. This level of understanding and modelling allows to identify a criterion with which one can discriminate between solar and cosmic ray forcing on a period of several decades. We define such a criterion and discuss related existing observations

    High resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey III. DA white dwarfs

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200912531Context. The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Aims. Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. Methods. The spectra are compared with theoretical model atmospheres using a fitting technique. Results. Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new).Peer reviewe
    corecore